
Empirical Model: ENSO, Solar, Volcanic Aero, Anthro
http://www.leapcad.com/Climate_Analysis/Empirical_Model_ENSO_Solar_VolcAero_Anthro.xmcd

On time scales of 10 to 50 years (and longer) decadal climate forecasts are difficult to make with
general circulation climate models due to their many uncertainties [IPCC, 2007]. We will use the
methodology first used by Schonwiese and Bayer in "Some statistical aspects of anthropogenic and
natural forced global temperature change", 1995.  We will model global temperature by with a
multiforced lagged regression by combining ENSO, Volcanic Aerosols, Irradiance, and the effects of
Anthropogenic Influence.  

Analysis
Using the most recently available characterizations of ENSO, E, volcanic aerosols, V, solar irradiance,
S, and anthropogenic influences, A, we perform multiple linear regression analysis to decompose
monthly mean surface temperature anomalies since 1980 into four components.  
Monthly mean surface temperature anomalies ∆TMS are reconstructed as:

∆TMS t( ) co cE E t ∆tE−( )⋅+ cV V t ∆tV−( )⋅+ cS S t tS−( )⋅+ cA A t tA−( )⋅+=

Where E, V, S and A are the time series and the lags (in months) are ∆tE = 3, ∆tV = 6, and ∆tS = 0 and
∆tA = 17 years. The lags are chosen to maximize the proportion of global variability that the statistical
model captures and are spatially invariant (although a geographical dependence is expected). The fitted
coefficients, co. . ., are obtained by multiple linear regression against the instrumental surface

temperature record (HadCRUT3v).  

The multivariate ENSO index, E, is a weighted average of the main ENSO features contained in
sea-level pressure, surface wind, surface sea and air temperature, and cloudiness [Wolter and Timlin,
1988]. Volcanic aerosols, V, in the stratosphere are compiled by Sato et al. [1993] since 1850, updated
from giss.nasa.gov to 1999 and extended to the present with zero values. Although some volcanic
activity occurred between 2006 and 2008, it is difficult to calculate the aerosol optical depth because of
the lack of direct quantitative space-based observations. Solar irradiance, S, is estimated as the
competing effects of sunspots and facular, identified in observations made by space-based radiometers
[Lean et al., 2005]. The anthropogenic influence, A, is the Forcing Effect of the concentration (ppm) of
CO2. 

Climate Forecasting:
Using global and regional surface temperature responses to the four individual influences parameterized
by regression against the observations from 1980 to 2008, we forecast change from 2009 to 2020 by
adopting the best estimate of how each influence will change in the future. The anthropogenic forcing in the
past 40 years is well represented by a linear trend that we extrapolate into the future. 

We assume that future solar irradiance cycles replicate cycle 23, with cycle 24 
(See: http://www.leapcad.com/Climate_Analysis/Climate_Data-Proxies_and_Reconstructions.pdf  
 pg. 21 ) commencing at the beginning of 2009. Although solar activity (as indicted by sunspot numbers)
was less in cycle 23 than in cycles 21 and 22, the total irradiance amplitude (near 0.1%) is similar in the
three past cycles since it is the net effect of sunspot darkening and facular brightening, both of which are
altered by solar activity. Since ENSO fluctuations and volcanic eruptions are not predictable on decadal
time scales, we estimate their maximum likely future impact with a scenario that includes a Pinatubo-like
eruption with peak impact in 2014 and a super ENSO with maximum impact in 2019, mimicking a similar
sequence that occurred from 1992 to 1997 (Figure Stratospheric Optical Depths). 



The Data: Temperature, ENSO Index, Volcanic Aerosols, Anthropogenic (CO2 ppm)

HadCrut Temperature and CO2 ppm
http://www.cru.uea.ac.uk/cru/data/temperature/hadcrut3vgl.txt    Monthly Temp Data  1850 to 2009

Read data from http://www.esrl.noaa.gov/gmd/ccgg/trends/co2_data_mlo.

MLCO2 READPRN "NOA _Mauna_Loa_Monthly_CO2.TXT"( ):=

Date MLCO2 2〈 〉:= CO2ML MLCO2 4〈 〉:= TrendCO2 MLCO2 5〈 〉:= RD rows Date( ):=

Get CO2 Trend Line from 1990 to 2010, then project to 2020

Date1990 submatrix Date 383, RD 1−, 0, 0, ( ):= Lco2 line Date1990 submatrix TrendCO2 383, RD 1−, 0, 0, ( ), ( ):=

Trendco2 Year( ) Lco20
Lco21

Year⋅+:= Co 280:= m 0 12 10⋅..:= Yr2020m
2010

m

12
+:=

Keeling yr( ) 1.054 10
2−⋅ yr 1960−( )

2
9 10

1−⋅ yr 1960−( )⋅+ 315.5+:=

SipleCO2 READPRN "Friedli Siple CO2 1986.TXT"( ):= IceCO2 READPRN "CO2 Ice Core Data.txt"( ):=

http://www.wasserplanet.becsoft.de/180CO2/CO2tot1812-2007.txt
Column C: CO2 total 1812-1961 corrected. annual averages from raw data. 

HadCrut READPRN "hadcrut3vgl.txt"( ):= rows HadCrut( ) 320= cols HadCrut( ) 14= n 0 159..:=
HadCrutx READPRN "hadcrut3glx.txt"( ):= rows HadCrutx( ) 160= cols HadCrutx( ) 14= n 0 159..:=

TCrut
n
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12
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⋅






∑

=

:=
Timecrutn

HadCrut
2 n⋅ 0, :=

TCrut
n

HadCrutx
n 13, := TCrutPlus Φ TCrut( ) TCrut⋅( )

→
:=
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ENSO Index Monthly Data from 1950 to 2009
http://www.esrl.noaa.gov/psd/people/klaus.wolter/MEI/mei.html  Monthly ENSO Data  1850 to 2009
MEIM READPRN "MultiVariate ENSO Index.TXT"( ):= R rows MEIM( ):= rr 0 R 1−( ) 12⋅ 11+..:=

MEIx submatrix MEIM 0, R 1−, 1, 12, ( ):=

MEI
rr
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floor
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Pacific Decadal Oscillation (PDOI) Index from 1900 to 2009 
      Note:  ENSO and PDO are not statistically independent. They have a 47% correlation.
http://jisao.washington.edu/data/pdo/    Year, Jan to Dec 
PDO READPRN "PDO_Index.dat"( ):= R rows PDO( ):= rr 0 R 1−( ) 12⋅ 11+..:=
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rr
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floor

rr
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Stratospheric Volcanic Aerosols
     Note:  Volcanic Aerosols and ENSO are not statistically independent. Corr = 40%
http://data.giss.nasa.gov/modelforce/strataer/       Data: Global, NH, SH

VA READPRN "Aerosols-Monthly-Mean Optical Thickness_tau_line.dat"( ):=
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PMOD Solar Irradiance

TSIPMOD READPRN "TSI from 1979 to 2009-PMOD composite_d41_62_0906.txt"( ):=

TSI READPRN "TSIpmod2.txt"( ):= DateTSI READPRN "TSIpmodDate.txt"( ):=

TSIYr 1980 floor TSIPMOD
1〈 〉 365

1−⋅



+:= TSIMon ceil DateTSI TSIYr−( ) 12⋅[ ]:=

TAM, Convert Daily to Monthly Average
TSIMonAvg TAM TSIMon TSIYr, TSI, ( ):= TSIsmm READPRN "TSIsm8.txt"( ):=
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Reconstruction of Solar Irradiance since 1610, Lean 1995  (1600-1995
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/contributions_by_author/lean1995/

TSDlean READPRN "TSDLeanFilled.txt"( ):=

TSDFlean READPRN "lean1995data.txt"( ):= Yrlean TSDFlean
0〈 〉:=

Solar Irradiance Correlates with U.S. Temp Anomaly

Lean Reconstructed Solar Irradiance (Red), PMOD +1.5 (Green), and Temp Anomaly (Blue)
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Zonal Variation of Irradiance

http://data.giss.nasa.gov/cgi-bin/cdrar/effij.py

IrradZonal READPRN "Irradiance zonal01.dat"( ):=

90− 80− 70− 60− 50− 40− 30− 20− 10− 0 10 20 30 40 50 60 70 80 90
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Mean Zonal Irradiance

Latitude

Z
on

al
 M

ea
n

Monthly Time Series Matrices with Optimized Lags for Period 1980 - 2005
Let Y be the Temp  and X1, X2, X3, and X4 be the delayed matrices for ENSO, Irradiance, Volcanic
Aerosols, and Anthropogenic Influence.
HadCrut Temperature Data

HadCrut
260 0, 1980= 2005 1980− 25= r25 0 26..:= YrEven

r25
260 2 r25⋅+:= n 0 12..:=

HadCrutDat
r25 n, HadCrut

260 r25 2⋅+ n, := HadCrutMDat R rows HadCrutDat( ):= rr 0 R 1−( ) 12⋅ 11+..:=

HCTemp
rr

HadCrutDat
floor

rr
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mod rr 12, ( ) 1+, 
:=
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rr
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floor
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mod rr 12, ( )
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+:=

MEID
360
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Y submatrix HCTemp 0, 12 26⋅, 0, 0, ( ):= YearY submatrix MEID 360, 360 12 26⋅+, 0, 0, ( ):=
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Empirical Component Data for 1980 to 2005, X1, X2, X3, X4, Given Optimized Lags (Months), ∆t:
(The Optimization Procedure and Optimized Month Delays (3, 6, 0, 17Yrs) follows on pg 7.)

Lag Operator ∆t(X, N=1980, τ): ∆t X N1980, τ, ( ) submatrix X N1980 τ−, N1980 τ− 12 26⋅+, 0, 0, ( ):=

Define Forcing Parameters:  X are normal forcings, Xs are Gasussian Smoothed  

X1 = ENSO (E): 1980 through 2005  ∆tE = 3, MEID
360

1980= x1 ∆t MEI 360, 3, ( ):=

μ1 mean x1( ):= σ1 stderr YearY x1, ( ):= z1 x1 μ1−( ) σ1
1−⋅:= xs1 ksmooth YearY z1, 2, ( ):=

X2 = Monthly Volcanic Aerosols (V), τV = 6, VA
1560 0, 1980.04=

m 0 100..:= Zeros
m

0:= VAZ stack VA 1〈 〉 Zeros, ( ):= x2 ∆t VAZ 1560, 6, ( ):=

μ2 mean x2( ):= σ2 stderr YearY x2, ( ):= z2 x2 μ2−( ) σ2
1−⋅:= xs2 ksmooth YearY z2, 2, ( ):=

X3 = Solar Irradiance (S), τS = 0 TSIMonAvg 0〈 〉( )
13 1980=

x3 ∆t TSIMonAvg 1〈 〉 13, 0, ( ):= μ3 mean x3( ):= σ3 stderr YearY x3, ( ):= z3 x3 μ3−( ) σ3
1−⋅:=

xs3 ksmooth YearY z3, 2, ( ):=

X4 = Anthropogenic Forcing, ∆F, of CO2 ppm (A), τA = 10*17 (17 Yr Delay)

Assume total radiative forcing (includes CH4) is proportional to radiative forcing due to carbon dioxide.

∆F C( ) 4.841 ln
C

Co








0.0906 C Co−( )⋅+:= ∆FIPCC C( ) 6.3 ln
C

Co








:=

CO2ppm ∆t TrendCO2 261, 17 12⋅, ( ):= x4 ∆FIPCC CO2ppm( )
→

:= Date
262

1980.042=

μ4 mean x4( ):= σ4 stderr YearY x4, ( ):= z4 x4 μ4−( ) σ4
1−⋅:= xs4 ksmooth YearY z4, 2, ( ):=

PDOYr
960

1980=X5 = Pacific Decadal Oscillation (PDO) Index (PDO), τD = 10*17 )

x5 ∆t PDOI 960, 3, ( ):= μ5 mean x5( ):= σ5 stderr YearY x5, ( ):= z5 x5 μ5−( ) σ5
1−⋅:=

Multi-Variate Component Construction and Design Matrix (Optimized Lags):

Yi β0 β1 X1i⋅+ β2 X2i⋅+ β
3

X3i⋅+ β
4

X4i⋅+ εi+=

The design matrix for our Temp Stats data can be constructed with the components i 0 313 1−..:=

ONE
i

1:= ENSO          Volcanic Aerosols      Solar          Anthro - Effects CO2

X
0〈 〉

ONE:= X
1〈 〉

z1:= X
2〈 〉

z2:= X
3〈 〉

z3:= X
4〈 〉

z4:=

Xs 0〈 〉 ONE:= Xs 1〈 〉 xs1:= Xs 2〈 〉 xs2:= Xs 3〈 〉 xs3:= Xs 4〈 〉 xs4:=

b X
T

X⋅( ) 1−
X

T
Y⋅( )⋅:= bT 0.21959 0.06608 0.05037− 0.03063 0.01255( )=

bs XsT Xs⋅( ) 1−
XsT Y⋅( )⋅:= bsT 0.21978 0.14923 0.09635− 0.04577 0.01226( )=

Save Model β Coefficient Results: WRITEPRN "Emp_ESVA_Coefficients.txt"( ) b:=

∆T b
0

b
1

X
1〈 〉⋅+ b

2
X

2〈 〉⋅+ b
3

X
3〈 〉⋅+ b

4
X

4〈 〉⋅+:= ∆Ts bs
0

bs
1

xs1⋅+ bs
2

xs2⋅+ bs
3

xs3⋅+ bs
4

xs4⋅+:=

corr Y ∆T, ( ) 0.87445= RSquare corr Y ∆T, ( )
2

0.76467=:= corr Y ∆Ts, ( )
2

0.77449=



Optimization Procedure and Results: 

Determine Time Lags to Maximize Correlation (R2) of Regression Model to Global Temperature
Evaluate lags of 0 to 12 Months for ENSO, Aerosols, and Irradiance and 5 to 20 yrs for Effects of CO2 ppm

OptLags Y( ) X
0〈 〉

ONE←

col MaxCorr 0←←

X
1〈 〉

∆t MEI 360, te, ( )←

X
2〈 〉

∆t VAZ 1560, ta, ( )←

X
3〈 〉

∆t TSIMonAvg 1〈 〉 13, ti, ( )←

co2ppm ∆t TrendCO2 261, tc 12⋅, ( )←

X
4〈 〉

∆FIPCC co2ppm( )
→

←

b X
T

X⋅( ) 1−
X

T
Y⋅( )⋅←

∆T b
0

b
1

X
1〈 〉⋅+ b

2
X

2〈 〉⋅+ b
3

X
3〈 〉⋅+ b

4
X

4〈 〉⋅+←

Corr corr Y ∆T, ( )
2←

Opt
1 0, col←

MaxCorr Corr←

Corr MaxCorr>if

Opt col〈 〉
Corr te ta ti tc( )T←

col col 1+←

tc 15 20..∈for

ti 0 2..∈for

ta 6 6..∈for

te 3 3..∈for

Opt

:=

Run Opt Routine and Gather Data

OptDat OptLags Y( ):= OptDat
1 0, 2=

OptDatT OptDatT:=

OptDat
OptDat1 0, 〈 〉T

0.76467 3 6 0 17( )=

max OptDatT 0〈 〉( ) 0.76467=

Optimization Results
For Optimum E, V, S, A Lags:
3, 6, 0, 17 (yrs), respectively. 

 R2 = 0.76



The regression and estimation results are:
The numbers shown in parentheses below the regression coefficients are the magnitudes of their
t-ratios; i.e. the coefficients divided by the standard deviation of the regression coefficient. All but
the coefficient for Sunspot number are significantly different from zero at the 95 percent level of
confidence and they are of the right sign.

Shown below is a comparison of the observed temperature change and the temperature change
predicted by the regression equation.  The observations are shown in red and the estimations
from the regression equation are shown in blue.

Another way of viewing the comparison is in the scatter diagram below of the actual and
regression predicted temperature changes.

The t-ratios for the variables included in the regression equation are significant.  They explain
76 percent of the variation in the year-to-year temperature change. The insolation and
CO2 ppm both a 76% correlation. Also the effect of the CO2 in the equation includes the effects
of all variables influencing temperature change which are correlated with the general trend on
CO2 concentration but are not in the equation. These would include the effects of
anthropogenic water vapor and anthropogenic cloudiness.

Compare Anthropogenic Forcing Component - (17 Year Lag) = b4*z4 (Green) of ∆T to Data
b4*z4 is the Optimized Match of Effects of Antro Forcing to Global Temperature Data
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Statistical Analysis:

Four Factors - ENSO, Volcanic Aerosols, Insolation, and
CO2 ppm explain 3/4 (76%) of the temperature variation.

int intercept Y ∆T, ( ):= s RSquare:=

int 0.05168= s 0.76467= δT int s Y⋅+:=
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Test for Possible Regression

By extending  this test to include p slope parameters H0:  β1 = β2 = β3 = ... = βp = 0

we have the equivalent test for the 
possibility of a multiple regression,

H0:  no multiple regression relationship

As in simple linear regression, we can associate each data value
with three types of deviations, specifically, the residual error, e

yhat X b⋅:= e Y yhat−:=

Sum of Squares

We can also use matrices to calculate the sum of squares for residual error,

SSE e
T

e⋅:= SSE 2.36546=

as well as for regression, SSR yhat mean Y( )− T
yhat mean Y( )−( )⋅:=

The total sum of squares equals n rows Y( ):= p 4:=

SST SSE SSR+:= DF_REG p:= DF_RESID n p 1+( )−:= DF_RESID 308=

Mean Squares
Again, as in simple linear regression, dividing each sum of squares by the corresponding
degrees of freedom provides us with variance estimates.  The mean square for residual error



MSE
SSE

DF_RESID
:= MSR

SSR

DF_REG
:= DF_TOTAL n 1−:=

F Test
The final entry in the table is the F statistic and corresponding p-value for the
significance of an overall multiple regression.  Under the null hypothesis of

H0:  no regression relationship

F
MSR

MSE
:= Rsq

SSR

SST
:= Rsq 0.76467=the test statistic

has an F distribution with n1 DF_REG:= n2 DF_RESID:=

degrees of freedom. The p-value of the test, then,  is given by
p_val 1 pF F n1, n2, ( )−:= p_val 0=

Summary: Analysis of Variance Table
Summarizing the above for our example,  

DF SS MS F

DF_REG 4= SSR 7.68624= MSR 1.92156= F 250.20084=

DF_RESID 308= SSE 2.36546= MSE 0.00768= p-value

DF_TOTAL 312= SST 10.0517= p_val 0=

The amount of variability explained by the linear regression (MSR) is greater than the
amount due to residual error (MSE).  The difference is large enough (the p-value is, in fact,
close to 0) to strongly reject the null hypothesis,

Correlations between each pair of variables 
in the model can be displayed in matrix form as 

FLEX augment X
1〈 〉

X
2〈 〉, X

3〈 〉, X
4〈 〉, Y, ( ):=

j 0 p..:= k 0 p..:=

CORRj k, corr FLEX j〈 〉 FLEX k〈 〉, ( ):=

STATISTICAL CORRELATIONS TO COMPONENTS
 Correlation between "independent" variables

41% correlation between x1 (ENSO) and x2 (Volcanic) 
Strong Correlation to Global Temp between: 

Y (Temp) and x2 (Volcanic Aero) = 38% 
Y (Temp) and x4 (Anthropogenic) = 78%

x1 x2 x3 x4 y

CORR

1

0.41176

0.0859−

0.10573−

0.1549

0.41176

1

0.03022−

0.31352−

0.38169−

0.0859−

0.03022−

1

0.15104−

0.03587

0.10573−

0.31352−

0.15104−

1

0.78122

0.1549

0.38169−

0.03587

0.78122

1
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Evaluate t tests

Var_Covar_b X
T

X⋅( ) 1−
MSE⋅:= k 0 p..:=

se_bk Var_Covar_bk k, 
→

:= se_b
T

0.00495 0.00544 0.00549 0.00499 0.00049( )=

t tests

t
b

se_b

→

:= tT 44.3313 12.15164 9.18287− 6.14094 25.55555( )=

2010 to 2020 Climate Forecasting:

Empirical Component Data and Forecast:  X1, X2, X3, X4

X1 = ENSO: 1980 through 2010, then mimic 1992 to 1997 twice,  ∆tE = 3  

X2 = Monthly Volcanic Aerosols, repeat Pinatubo eruption with a peak in 2014, ∆tV = 6, 

X3 = Irradiance: 1980 through 2009, then replicate cycle 23, ∆tS = 0:  

X4 = Anthropogenic, ∆tA = 17*12 (17 Yr Delay),  then maintain trend. 

Multi-Variate Component Forecast Model (βs Determined from Previous Regression):

Yi β0 β1 X1i⋅+ β2 X2i⋅+ β
3

X3i⋅+ β
4

X4i⋅+ εi+=

The design matrix for our Temp Stats data can be constructed with the statements

X
1〈 〉

x1:= X
2〈 〉

x2:= X
3〈 〉

x3:= X
4〈 〉

x4:=

b READPRN "Emp_ESVA_Coefficients.txt"( ):=

∆Tforecast b
0

b
1

x1⋅+ b
2

x2⋅+ b
3

x3⋅+ b
4

x4⋅+:=



The regression and estimation forecast:
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