Simple 1D Latitudinal Energy Balance Model

http://leapcad.com/Climate Analysis/1D Zonal Globall Temperature-Energy Balance Model.xmcd

Energy flows into Earth through radiation from the Sun and out of Earth by reflection and radiation. There are latitudinal variations. The flow of energy into Earth and the flow of energy out of Earth must be equal if Earth is to maintain a stable temperature.

 H_0 is the extraterrestrial solar flux (w/m²). In the zonal model, we need to be able to calculate the total energy received from the sun per unit time. This is given by $\pi R^2 H_0$. The average extraterrestrial solar flux over the entire surface can by calculated by $H_0/4$.

Anthropogenic Global Warming Simulation:

The long wavelength flux to space, $H_{+}(T,c)$ can be approximated by a first order expansion in the surface air temperature and the logarithm of the atmospheric carbon dioxide concentration, c.

$$H+(T,c) = Aco2 + Bco2 T - Cco2 In(c/co)$$

We will assume that Aco2, Bco2, and Cco2 In(co/co) are a component parts of our general model for this point in time. We will then explicitly separate out the Cco2 In(c/co) contribution.

There are a number of estimates for Cco2. The preindustrial atmospheric CO2 concentration is 280 ppm. Today's value of 370 ppm

Data Constants:

SC: Solar Constant (W/m2),

A & B: Long Wave Radiation Heat Loss (Greenhouse) A (W/m2), B(W/m2/C) $R_{loss} = A + B \times T$

C: Transport Coefficient (Conductivity between zones) C(W/m2/C)

Tcrit: Temperature at which land becomes covered with snow and/or water turns to ice

Aice: Ice Albedo, SunWt: Annual mean radiation at latitude W/m2

CO2 Global Warming Forcing = 5.7 W/m2

Read NCEP surface air temperature (annual, zonal mean, deg C) and Sim Temp

TempDat :=
$$READPRN("NCEP_air_zonal.dat")$$
 rows(TempDat) = 72

TempSimToday := READPRN("FinalTempSim.txt")

Read Albedo Data: Earth Radiation Budget Experiment (ERBE) 1986 - 1989

Daily rotation of earth reduces solar constant by distributing sun energy along a zonal band

$$total_solar := \begin{vmatrix} total_solar \leftarrow 0 \\ for \ hour \in 1... hours_in_day \end{vmatrix}$$

$$noon_angle \leftarrow zonal_degrees \cdot \frac{hour}{hours_in_day}$$

$$for \ longitude \in 1..zonal_degrees$$

$$sun_angle \leftarrow longitude - noon_angle$$

$$MaxAngle \leftarrow if \left(cos\left(\frac{\pi \cdot sun_angle}{180}\right) > 0, cos\left(\frac{\pi \cdot sun_angle}{180}\right), 0\right)$$

$$total_solar \leftarrow total_solar + SC \cdot MaxAngle$$

$$FlipAug(V) := \begin{vmatrix} R \leftarrow rows(V) \\ for \ r \in 1...R \end{vmatrix}$$

$$VF_r \leftarrow V_r$$

$$VF_{R+r} \leftarrow V_{R+1-r}$$

$$VF$$

Annual Insolation: Accumulate normalized insolation through a year

$$Insolation_{lat} := 0 \qquad Init T := FlipAug(Init_T)$$

$$Insolation := \begin{cases} I \leftarrow Insolation \\ for \ day \in 1... \ days_in_year \end{cases}$$

$$tilt \leftarrow max_tilt \cdot cos \left(2 \cdot \frac{\pi \cdot day}{days_in_year} \right)$$

$$for \ j \in 1... \ lats$$

$$zenith \leftarrow if \left(zones_j + tilt < 90, zones_j + tilt, 90 \right)$$

$$I_i \leftarrow I_j + cos \left(zenith \cdot \frac{\pi}{180} \right)$$

$$solar_constant \cdot reverse(I)$$

$$days_in_year$$

$$latS := 2 \cdot latS \quad latS := 1 .. \ latS \quad insolation := FlipAug(insolation) \quad ZoneLat := FlipAug(ZoneLat)$$

$$SumCos := \sum cos \left(ZoneLat \cdot \frac{\pi}{180} \right) \qquad T_{Cos}_{latS} := Init_{T_{latS}} \cdot cos \left(ZoneLat_{latS} \cdot \frac{\pi}{180} \right)$$

$$Mean_{T} := \sum T_{Cos} \cdot \frac{1}{SumCos} \qquad Temp_{init} := \frac{\left[insolation \cdot (1 - Albedo) + C \cdot Mean_{T} - A - Cgw \right]}{B + C}$$

$$Mean_{T} = 4.362 \qquad mean \left(Temp_{init} \right) = 5.462 \qquad Step_{latS} := 0$$

```
tol_temp_diff := 1
Final_TA(Albedo) := | step \leftarrow 2 |
                   max_temp_diff \leftarrow 100
                   Temp \leftarrow Temp_{init}
                   while step < max_steps \( \tau \) max_temp_diff > tol_temp_diff
                     step \leftarrow step + 1
                     Temp\_old \leftarrow Temp
                 Final_T \leftarrow augment(Final_T, Albedo, Step)
                              FTA_{1,3} = 12 Final_Temp := FTA^{\langle 1 \rangle}
     FTA := Final\_TA(Albedo)
     mean(Final\_Temp) = 5.134 mean(TempDat) = 3.089
     NPole\_Eq\_Diff := Final\_Temp_{1} - Final\_Temp_{lats}
```

Lattitude Cape Coral, FL: 26°33'45" N. Avg Temp 23.5 C

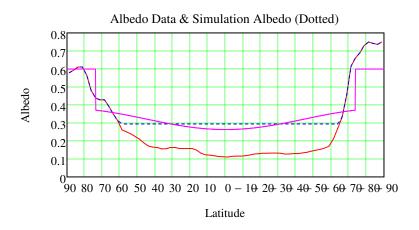
 $NPole_Eq_Diff = -44.562$

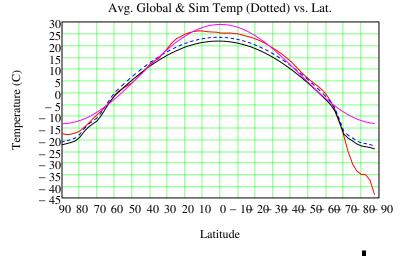
Final_Temp₂₆ = \blacksquare

North's 1-D Effusive EBM Analytic Model (Magenta Plots)

To is the planetary, globally averaged temperature, T2 is 2/3 of the Temp difference from the poles to equator, Tpe. The ice sheet edge (T = -10C) is above 73.74°, with ice albedo, α_{ice} .

$$\begin{split} & T_{o} \coloneqq 14.9 \qquad T_{pe} \coloneqq -42.3 \qquad T_{2} \coloneqq \frac{2}{3} \cdot T_{pe} \qquad x_{s} \coloneqq 0.96 \\ & \alpha_{o} \coloneqq 0.303 \qquad \alpha_{2} \coloneqq 0.0779 \qquad \alpha(\theta) \coloneqq \text{if} \left(\left| \theta \right| < 73.7, \alpha_{o} + \alpha_{2} \cdot \text{Leg} \left(2, \sin \left(\frac{\theta \cdot \pi}{180} \right) \right), \alpha_{ice} \right) \\ & T_{North}(\theta) \coloneqq T_{o} + T_{2} \cdot \text{Leg} \left(2, \sin \left(\frac{\theta \cdot \pi}{180} \right) \right) \qquad T_{North}(90) = -13.3 \qquad T_{North}(73.7) = -9.968 \end{split}$$





Climate Sensitivity: Anthrotropic Global Warming from Doubled CO2 Concentration

 $AGW := mean(Final_Temp - TempSimToday)$ AGW = 1.444

Taking the central value of the likely range of climate sensitivities of 3 oC (the temperature rise from doubling atmospheric CO2) the equilibrium temperature rise is expected to be:

Temp rise = ln([CO2]2/[CO2]1)*3/ln2

where [CO2]1 is the starting [CO2] level, [CO2]2 is the end [CO2] level, 3 is the climate sensitivity and In2 refers to the doubling.

$$\Delta T_{\text{CO2}}(\text{CO2}) := \ln \left(\frac{\text{CO2}}{c_0} \right) \cdot \frac{3}{\ln(2)}$$

H2O and CO2 have the same number of IR active vibrations - 3. An absorption band at a given frequency is due to a specific vibration. For example the 650cm-1 CO2 absorption is due to the (doubly degenerate) bending mode. So more asymmetry in a molecule does not mean more absorption at a given wavelength. It usually means more wavelengths at which it absorbs.

However asymmetry will complicate the rotational-fine structure of a particular IR absorption, however H2O's rotational fine structure will be quite dispersed because of its light mass (18) compared to CO2's 44)

Radiative Forcing

The radiative forcing for CO2 (this is the forcing at the tropopause, not the surface, as described in Myhre et al 1998 and later papers) is

$$k \coloneqq 5.35 \cdot \frac{W}{m^2} \qquad F_{CO2}(CO2) \coloneqq k \ln\!\left(\frac{CO2}{c_o}\right) \qquad F_{CO2}\!\!\left(2 \cdot c_o\right) = 3.708 \frac{kg}{s^3}$$
 Where the constant k (derived from line-by-line radiative transfer codes) C0 are the final and

initial CO2 concentrations.

Climate sensitivity is the temperature response of the system per unit forcing. In other words, a high climate sensitivity means that it is very easy to change the global mean temperature, while a very low sensitivity would require an enormous forcing to get that same change. In the easiest case, we'll consider what happens when you only increase some forcing (say double CO2) and allow the outgoing radiation to increase (according to the Stefan-Boltzmann law) to re-establish a new radiative equilibrium. Here, nothing else changes with the climate state (no cloud cover changes, no ice melts, etc) except for our forcing. This is the so-called Planck response.

In a simple way, we can assume that the surface and emission temperature are linearly related, in which case the Planck-only feedback response can be computed as the inverse of the derivative of Stefan-Boltzmann with respect to temperature.

Depending on how radiative forcing is defined, this number can often be reduced further to account for ozone absorption of UV or other effects, but in general the forcing due to a realistic change in solar increase is very small. It follows that it would take about a 22 W/m2 change in solar irradiance to produce a 1 K change in global temperature. This is actually a very stable climate. This also demonstrates the intellectual bankruptcy of those who claim that the solar trend over the last half century (which has pretty much been a flat-line when you remove the 11-year oscillatory signal) is responsible for most of the observed late 20th century warming, and simultaneously argue for a low sensitivity.